Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Jointly-Optimized Searching and Tracking with Random Finite Sets (2302.01845v1)

Published 1 Feb 2023 in eess.SY and cs.SY

Abstract: In this paper, we investigate the problem of joint searching and tracking of multiple mobile targets by a group of mobile agents. The targets appear and disappear at random times inside a surveillance region and their positions are random and unknown. The agents have limited sensing range and receive noisy measurements from the targets. A decision and control problem arises, where the mode of operation (i.e., search or track) as well as the mobility control action for each agent, at each time instance, must be determined so that the collective goal of searching and tracking is achieved. We build our approach upon the theory of random finite sets (RFS) and we use Bayesian multi-object stochastic filtering to simultaneously estimate the time-varying number of targets and their states from a sequence of noisy measurements. We formulate the above problem as a non-linear binary program (NLBP) and show that it can be approximated by a genetic algorithm. Finally, to study the effectiveness and performance of the proposed approach we have conducted extensive simulation experiments.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.