Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Decentralised and Cooperative Control of Multi-Robot Systems through Distributed Optimisation (2302.01728v1)

Published 3 Feb 2023 in eess.SY, cs.DC, and cs.SY

Abstract: Multi-robot cooperative control has gained extensive research interest due to its wide applications in civil, security, and military domains. This paper proposes a cooperative control algorithm for multi-robot systems with general linear dynamics. The algorithm is based on distributed cooperative optimisation and output regulation, and it achieves global optimum by utilising only information shared among neighbouring robots. Technically, a high-level distributed optimisation algorithm for multi-robot systems is presented, which will serve as an optimal reference generator for each individual agent. Then, based on the distributed optimisation algorithm, an output regulation method is utilised to solve the optimal coordination problem for general linear dynamic systems. The convergence of the proposed algorithm is theoretically proved. Both numerical simulations and real-time physical robot experiments are conducted to validate the effectiveness of the proposed cooperative control algorithms.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.