Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

User-centric Heterogeneous-action Deep Reinforcement Learning for Virtual Reality in the Metaverse over Wireless Networks (2302.01471v2)

Published 3 Feb 2023 in cs.NI, cs.AI, and cs.LG

Abstract: The Metaverse is emerging as maturing technologies are empowering the different facets. Virtual Reality (VR) technologies serve as the backbone of the virtual universe within the Metaverse to offer a highly immersive user experience. As mobility is emphasized in the Metaverse context, VR devices reduce their weights at the sacrifice of local computation abilities. In this paper, for a system consisting of a Metaverse server and multiple VR users, we consider two cases of (i) the server generating frames and transmitting them to users, and (ii) users generating frames locally and thus consuming device energy. Moreover, in our multi-user VR scenario for the Metaverse, users have different characteristics and demands for Frames Per Second (FPS). Then the channel access arrangement (including the decisions on frame generation location), and transmission powers for the downlink communications from the server to the users are jointly optimized to improve the utilities of users. This joint optimization is addressed by deep reinforcement learning (DRL) with heterogeneous actions. Our proposed user-centric DRL algorithm is called User-centric Critic with Heterogenous Actors (UCHA). Extensive experiments demonstrate that our UCHA algorithm leads to remarkable results under various requirements and constraints.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.