Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Self-Supervised Relation Alignment for Scene Graph Generation (2302.01403v2)

Published 2 Feb 2023 in cs.CV

Abstract: The goal of scene graph generation is to predict a graph from an input image, where nodes correspond to identified and localized objects and edges to their corresponding interaction predicates. Existing methods are trained in a fully supervised manner and focus on message passing mechanisms, loss functions, and/or bias mitigation. In this work we introduce a simple-yet-effective self-supervised relational alignment regularization designed to improve the scene graph generation performance. The proposed alignment is general and can be combined with any existing scene graph generation framework, where it is trained alongside the original model's objective. The alignment is achieved through distillation, where an auxiliary relation prediction branch, that mirrors and shares parameters with the supervised counterpart, is designed. In the auxiliary branch, relational input features are partially masked prior to message passing and predicate prediction. The predictions for masked relations are then aligned with the supervised counterparts after the message passing. We illustrate the effectiveness of this self-supervised relational alignment in conjunction with two scene graph generation architectures, SGTR and Neural Motifs, and show that in both cases we achieve significantly improved performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.