Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Practical Bandits: An Industry Perspective (2302.01223v1)

Published 2 Feb 2023 in cs.LG and cs.IR

Abstract: The bandit paradigm provides a unified modeling framework for problems that require decision-making under uncertainty. Because many business metrics can be viewed as rewards (a.k.a. utilities) that result from actions, bandit algorithms have seen a large and growing interest from industrial applications, such as search, recommendation and advertising. Indeed, with the bandit lens comes the promise of direct optimisation for the metrics we care about. Nevertheless, the road to successfully applying bandits in production is not an easy one. Even when the action space and rewards are well-defined, practitioners still need to make decisions regarding multi-arm or contextual approaches, on- or off-policy setups, delayed or immediate feedback, myopic or long-term optimisation, etc. To make matters worse, industrial platforms typically give rise to large action spaces in which existing approaches tend to break down. The research literature on these topics is broad and vast, but this can overwhelm practitioners, whose primary aim is to solve practical problems, and therefore need to decide on a specific instantiation or approach for each project. This tutorial will take a step towards filling that gap between the theory and practice of bandits. Our goal is to present a unified overview of the field and its existing terminology, concepts and algorithms -- with a focus on problems relevant to industry. We hope our industrial perspective will help future practitioners who wish to leverage the bandit paradigm for their application.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.