Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Explicit two-sided unique-neighbor expanders (2302.01212v2)

Published 2 Feb 2023 in math.CO, cs.CC, cs.DM, and cs.DS

Abstract: We study the problem of constructing explicit sparse graphs that exhibit strong vertex expansion. Our main result is the first two-sided construction of imbalanced unique-neighbor expanders, meaning bipartite graphs where small sets contained in both the left and right bipartitions exhibit unique-neighbor expansion, along with algebraic properties relevant to constructing quantum codes. Our constructions are obtained from instantiations of the tripartite line product of a large tripartite spectral expander and a sufficiently good constant-sized unique-neighbor expander, a new graph product we defined that generalizes the line product in the work of Alon and Capalbo and the routed product in the work of Asherov and Dinur. To analyze the vertex expansion of graphs arising from the tripartite line product, we develop a sharp characterization of subgraphs that can arise in bipartite spectral expanders, generalizing results of Kahale, which may be of independent interest. By picking appropriate graphs to apply our product to, we give a strongly explicit construction of an infinite family of $(d_1,d_2)$-biregular graphs $(G_n)_{n\ge 1}$ (for large enough $d_1$ and $d_2$) where all sets $S$ with fewer than a small constant fraction of vertices have $\Omega(d_1\cdot |S|)$ unique-neighbors (assuming $d_1 \leq d_2$). Additionally, we can also guarantee that subsets of vertices of size up to $\exp(\Omega(\sqrt{\log |V(G_n)|}))$ expand losslessly.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.