Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement learning-based estimation for partial differential equations (2302.01189v2)

Published 20 Jan 2023 in cs.LG, cs.SY, and eess.SY

Abstract: In systems governed by nonlinear partial differential equations such as fluid flows, the design of state estimators such as Kalman filters relies on a reduced-order model (ROM) that projects the original high-dimensional dynamics onto a computationally tractable low-dimensional space. However, ROMs are prone to large errors, which negatively affects the performance of the estimator. Here, we introduce the reinforcement learning reduced-order estimator (RL-ROE), a ROM-based estimator in which the correction term that takes in the measurements is given by a nonlinear policy trained through reinforcement learning. The nonlinearity of the policy enables the RL-ROE to compensate efficiently for errors of the ROM, while still taking advantage of the imperfect knowledge of the dynamics. Using examples involving the Burgers and Navier-Stokes equations, we show that in the limit of very few sensors, the trained RL-ROE outperforms a Kalman filter designed using the same ROM. Moreover, it yields accurate high-dimensional state estimates for trajectories corresponding to various physical parameter values, without direct knowledge of the latter.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.