Reinforcement learning-based estimation for partial differential equations (2302.01189v2)
Abstract: In systems governed by nonlinear partial differential equations such as fluid flows, the design of state estimators such as Kalman filters relies on a reduced-order model (ROM) that projects the original high-dimensional dynamics onto a computationally tractable low-dimensional space. However, ROMs are prone to large errors, which negatively affects the performance of the estimator. Here, we introduce the reinforcement learning reduced-order estimator (RL-ROE), a ROM-based estimator in which the correction term that takes in the measurements is given by a nonlinear policy trained through reinforcement learning. The nonlinearity of the policy enables the RL-ROE to compensate efficiently for errors of the ROM, while still taking advantage of the imperfect knowledge of the dynamics. Using examples involving the Burgers and Navier-Stokes equations, we show that in the limit of very few sensors, the trained RL-ROE outperforms a Kalman filter designed using the same ROM. Moreover, it yields accurate high-dimensional state estimates for trajectories corresponding to various physical parameter values, without direct knowledge of the latter.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.