Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Disentanglement of Latent Representations via Causal Interventions (2302.00869v3)

Published 2 Feb 2023 in cs.LG, cs.CV, cs.DM, and stat.ME

Abstract: The process of generating data such as images is controlled by independent and unknown factors of variation. The retrieval of these variables has been studied extensively in the disentanglement, causal representation learning, and independent component analysis fields. Recently, approaches merging these domains together have shown great success. Instead of directly representing the factors of variation, the problem of disentanglement can be seen as finding the interventions on one image that yield a change to a single factor. Following this assumption, we introduce a new method for disentanglement inspired by causal dynamics that combines causality theory with vector-quantized variational autoencoders. Our model considers the quantized vectors as causal variables and links them in a causal graph. It performs causal interventions on the graph and generates atomic transitions affecting a unique factor of variation in the image. We also introduce a new task of action retrieval that consists of finding the action responsible for the transition between two images. We test our method on standard synthetic and real-world disentanglement datasets. We show that it can effectively disentangle the factors of variation and perform precise interventions on high-level semantic attributes of an image without affecting its quality, even with imbalanced data distributions.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.