Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sharp Lower Bounds on Interpolation by Deep ReLU Neural Networks at Irregularly Spaced Data (2302.00834v2)

Published 2 Feb 2023 in cs.LG, cs.NE, and stat.ML

Abstract: We study the interpolation power of deep ReLU neural networks. Specifically, we consider the question of how efficiently, in terms of the number of parameters, deep ReLU networks can interpolate values at $N$ datapoints in the unit ball which are separated by a distance $\delta$. We show that $\Omega(N)$ parameters are required in the regime where $\delta$ is exponentially small in $N$, which gives the sharp result in this regime since $O(N)$ parameters are always sufficient. This also shows that the bit-extraction technique used to prove lower bounds on the VC dimension cannot be applied to irregularly spaced datapoints. Finally, as an application we give a lower bound on the approximation rates that deep ReLU neural networks can achieve for Sobolev spaces at the embedding endpoint.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.