Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Analysis of Biomass Sustainability Indicators from a Machine Learning Perspective (2302.00828v1)

Published 2 Feb 2023 in cs.AI and cs.LG

Abstract: Plant biomass estimation is critical due to the variability of different environmental factors and crop management practices associated with it. The assessment is largely impacted by the accurate prediction of different environmental sustainability indicators. A robust model to predict sustainability indicators is a must for the biomass community. This study proposes a robust model for biomass sustainability prediction by analyzing sustainability indicators using machine learning models. The prospect of ensemble learning was also investigated to analyze the regression problem. All experiments were carried out on a crop residue data from the Ohio state. Ten machine learning models, namely, linear regression, ridge regression, multilayer perceptron, k-nearest neighbors, support vector machine, decision tree, gradient boosting, random forest, stacking and voting, were analyzed to estimate three biomass sustainability indicators, namely soil erosion factor, soil conditioning index, and organic matter factor. The performance of the model was assessed using cross-correlation (R2), root mean squared error and mean absolute error metrics. The results showed that Random Forest was the best performing model to assess sustainability indicators. The analyzed model can now serve as a guide for assessing sustainability indicators in real time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube