Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A Universal Technique for Machine-Certified Proofs of Linearizable Algorithms (2302.00737v2)

Published 1 Feb 2023 in cs.DC, cs.DS, and cs.FL

Abstract: Linearizability has been the long standing gold standard for consistency in concurrent data structures. However, proofs of linearizability can be long and intricate, hard to produce, and extremely time consuming even to verify. In this work, we address this issue by introducing simple $universal$, $sound$, and $complete$ proof methods for producing machine-verifiable proofs of linearizability and its close cousin, strong linearizability. Universality means that our method works for any object type; soundness means that an algorithm can be proved correct by our method only if it is linearizable (resp. strong linearizable); and completeness means that any linearizable (resp. strong linearizable) implementation can be proved so using our method. We demonstrate the simplicity and power of our method by producing proofs of linearizability for the Herlihy-Wing queue and Jayanti's single-scanner snapshot, as well as a proof of strong linearizability of the Jayanti-Tarjan union-find object. All three of these proofs are machine-verified by TLAPS (the Temporal Logic of Actions Proof System).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.