Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Energy-Based Survival Models for Predictive Maintenance (2302.00629v1)

Published 1 Feb 2023 in eess.SY and cs.SY

Abstract: Predictive maintenance is an effective tool for reducing maintenance costs. Its effectiveness relies heavily on the ability to predict the future state of health of the system, and for this survival models have shown to be very useful. Due to the complex behavior of system degradation, data-driven methods are often preferred, and neural network-based methods have been shown to perform particularly very well. Many neural network-based methods have been proposed and successfully applied to many problems. However, most models rely on assumptions that often are quite restrictive and there is an interest to find more expressive models. Energy-based models are promising candidates for this due to their successful use in other applications, which include natural language processing and computer vision. The focus of this work is therefore to investigate how energy-based models can be used for survival modeling and predictive maintenance. A key step in using energy-based models for survival modeling is the introduction of right-censored data, which, based on a maximum likelihood approach, is shown to be a straightforward process. Another important part of the model is the evaluation of the integral used to normalize the modeled probability density function, and it is shown how this can be done efficiently. The energy-based survival model is evaluated using both simulated data and experimental data in the form of starter battery failures from a fleet of vehicles, and its performance is found to be highly competitive compared to existing models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.