Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Molecular Graph Generation by Decomposition and Reassembling (2302.00587v1)

Published 11 Dec 2022 in q-bio.BM, cs.AI, and cs.LG

Abstract: Designing molecular structures with desired chemical properties is an essential task in drug discovery and material design. However, finding molecules with the optimized desired properties is still a challenging task due to combinatorial explosion of candidate space of molecules. Here we propose a novel \emph{decomposition-and-reassembling} based approach, which does not include any optimization in hidden space and our generation process is highly interpretable. Our method is a two-step procedure: In the first decomposition step, we apply frequent subgraph mining to a molecular database to collect smaller size of subgraphs as building blocks of molecules. In the second reassembling step, we search desirable building blocks guided via reinforcement learning and combine them to generate new molecules. Our experiments show that not only can our method find better molecules in terms of two standard criteria, the penalized $\log P$ and drug-likeness, but also generate drug molecules with showing the valid intermediate molecules.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube