Papers
Topics
Authors
Recent
2000 character limit reached

Effectiveness of Moving Target Defenses for Adversarial Attacks in ML-based Malware Detection (2302.00537v1)

Published 1 Feb 2023 in cs.LG and cs.CR

Abstract: Several moving target defenses (MTDs) to counter adversarial ML attacks have been proposed in recent years. MTDs claim to increase the difficulty for the attacker in conducting attacks by regularly changing certain elements of the defense, such as cycling through configurations. To examine these claims, we study for the first time the effectiveness of several recent MTDs for adversarial ML attacks applied to the malware detection domain. Under different threat models, we show that transferability and query attack strategies can achieve high levels of evasion against these defenses through existing and novel attack strategies across Android and Windows. We also show that fingerprinting and reconnaissance are possible and demonstrate how attackers may obtain critical defense hyperparameters as well as information about how predictions are produced. Based on our findings, we present key recommendations for future work on the development of effective MTDs for adversarial attacks in ML-based malware detection.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com