Papers
Topics
Authors
Recent
2000 character limit reached

Improved Knowledge Distillation for Pre-trained Language Models via Knowledge Selection (2302.00444v1)

Published 1 Feb 2023 in cs.CL

Abstract: Knowledge distillation addresses the problem of transferring knowledge from a teacher model to a student model. In this process, we typically have multiple types of knowledge extracted from the teacher model. The problem is to make full use of them to train the student model. Our preliminary study shows that: (1) not all of the knowledge is necessary for learning a good student model, and (2) knowledge distillation can benefit from certain knowledge at different training steps. In response to these, we propose an actor-critic approach to selecting appropriate knowledge to transfer during the process of knowledge distillation. In addition, we offer a refinement of the training algorithm to ease the computational burden. Experimental results on the GLUE datasets show that our method outperforms several strong knowledge distillation baselines significantly.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.