Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Robustness of Code Generation Techniques: An Empirical Study on GitHub Copilot (2302.00438v1)

Published 1 Feb 2023 in cs.SE

Abstract: Software engineering research has always being concerned with the improvement of code completion approaches, which suggest the next tokens a developer will likely type while coding. The release of GitHub Copilot constitutes a big step forward, also because of its unprecedented ability to automatically generate even entire functions from their natural language description. While the usefulness of Copilot is evident, it is still unclear to what extent it is robust. Specifically, we do not know the extent to which semantic-preserving changes in the natural language description provided to the model have an effect on the generated code function. In this paper we present an empirical study in which we aim at understanding whether different but semantically equivalent natural language descriptions result in the same recommended function. A negative answer would pose questions on the robustness of deep learning (DL)-based code generators since it would imply that developers using different wordings to describe the same code would obtain different recommendations. We asked Copilot to automatically generate 892 Java methods starting from their original Javadoc description. Then, we generated different semantically equivalent descriptions for each method both manually and automatically, and we analyzed the extent to which predictions generated by Copilot changed. Our results show that modifying the description results in different code recommendations in ~46% of cases. Also, differences in the semantically equivalent descriptions might impact the correctness of the generated code ~28%.

Citations (76)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.