Learning from Stochastic Labels (2302.00299v1)
Abstract: Annotating multi-class instances is a crucial task in the field of machine learning. Unfortunately, identifying the correct class label from a long sequence of candidate labels is time-consuming and laborious. To alleviate this problem, we design a novel labeling mechanism called stochastic label. In this setting, stochastic label includes two cases: 1) identify a correct class label from a small number of randomly given labels; 2) annotate the instance with None label when given labels do not contain correct class label. In this paper, we propose a novel suitable approach to learn from these stochastic labels. We obtain an unbiased estimator that utilizes less supervised information in stochastic labels to train a multi-class classifier. Additionally, it is theoretically justifiable by deriving the estimation error bound of the proposed method. Finally, we conduct extensive experiments on widely-used benchmark datasets to validate the superiority of our method by comparing it with existing state-of-the-art methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.