Xenos: Dataflow-Centric Optimization to Accelerate Model Inference on Edge Devices (2302.00282v1)
Abstract: Edge computing has been emerging as a popular scenario for model inference. However, the inference performance on edge devices (e.g., Multi-Core DSP, FGPA, etc.) suffers from inefficiency due to the lack of highly optimized inference frameworks. Previous model inference frameworks are mainly developed in an operator-centric way, which provides insufficient acceleration to edge-based inference. Besides, the operator-centric framework incurs significant costs for continuous development and maintenance. In this paper, we propose Xenos, which can automatically conduct dataflow-centric optimization of the computation graph and accelerate inference in two dimensions. Vertically, Xenos develops operator linking technique to improve data locality by restructuring the inter-operator dataflow. Horizontally, Xenos develops DSP-aware operator split technique to enable higher parallelism across multiple DSP units. Our evaluation proves the effectiveness of vertical and horizontal dataflow optimization, which reduce the inference time by 21.2\%--84.9\% and 17.9\%--96.2\% , respectively. Besides, Xenos also outperforms the widely-used TVM by 3.22$\times$--17.92$\times$. Moreover, we extend Xenos to a distributed solution, which we call d-Xenos. d-Xenos employs multiple edge devices to jointly conduct the inference task and achieves a speedup of 3.68x--3.78x compared with the single device.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.