Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quickest Change Detection for Unnormalized Statistical Models (2302.00250v1)

Published 1 Feb 2023 in stat.ML and cs.LG

Abstract: Classical quickest change detection algorithms require modeling pre-change and post-change distributions. Such an approach may not be feasible for various machine learning models because of the complexity of computing the explicit distributions. Additionally, these methods may suffer from a lack of robustness to model mismatch and noise. This paper develops a new variant of the classical Cumulative Sum (CUSUM) algorithm for the quickest change detection. This variant is based on Fisher divergence and the Hyv\"arinen score and is called the Score-based CUSUM (SCUSUM) algorithm. The SCUSUM algorithm allows the applications of change detection for unnormalized statistical models, i.e., models for which the probability density function contains an unknown normalization constant. The asymptotic optimality of the proposed algorithm is investigated by deriving expressions for average detection delay and the mean running time to a false alarm. Numerical results are provided to demonstrate the performance of the proposed algorithm.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.