Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Toward Efficient Transportation Electrification of Heavy-Duty Trucks: Joint Scheduling of Truck Routing and Charging (2302.00240v4)

Published 1 Feb 2023 in eess.SY, cs.CY, cs.SY, math.CO, and math.OC

Abstract: The timely transportation of goods to customers is an essential component of economic activities. However, heavy-duty diesel trucks used for goods delivery significantly contribute to greenhouse gas emissions within many large metropolitan areas, including Los Angeles, New York, and San Francisco. To reduce GHG emissions by facilitating freight electrification, this paper proposes Joint Routing and Charging scheduling for electric trucks. The objective of the associated optimization problem is to minimize the cost of transportation, charging, and tardiness. A large number of possible combinations of road segments as well as a large number of combinations of charging decisions and charging durations leads to a combinatorial explosion in the possible decisions electric trucks can make. The resulting mixed-integer linear programming problem is thus extremely challenging because of the combinatorial complexity even in the deterministic case. Therefore, a Surrogate Level-Based Lagrangian Relaxation (SLBLR) method is employed to decompose the overall problem into significantly less complex truck subproblems. In the coordination aspect, each truck subproblem is solved independently of other subproblems based on the values of Lagrangian multipliers. In addition to serving as a means of guiding and coordinating trucks, multipliers can also serve as a basis for transparent and explanatory decision-making by trucks. Testing results demonstrate that even small instances cannot be solved using the off-the-shelf solver CPLEX after several days of solving. The SLBLR method, on the other hand, can obtain near-optimal solutions within a few minutes for small cases, and within 30 minutes for large ones. Furthermore, it has been demonstrated that as battery capacity increases, the total cost decreases significantly; moreover, as the charging power increases, the number of trucks required decreases as well.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 9 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube