Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sublinear Approximation Schemes for Scheduling Precedence Graphs of Bounded Depth (2302.00133v1)

Published 31 Jan 2023 in cs.DS

Abstract: We study the classical scheduling problem on parallel machines %with precedence constraints where the precedence graph has the bounded depth $h$. Our goal is to minimize the maximum completion time. We focus on developing approximation algorithms that use only sublinear space or sublinear time. We develop the first one-pass streaming approximation schemes using sublinear space when all jobs' processing times differ no more than a constant factor $c$ and the number of machines $m$ is at most $\tfrac {2n \epsilon}{3 h c }$. This is so far the best approximation we can have in terms of $m$, since no polynomial time approximation better than $\tfrac{4}{3}$ exists when $m = \tfrac{n}{3}$ unless P=NP. %the problem cannot be approximated within a factor of $\tfrac{4}{3}$ when $m = \tfrac{n}{3}$ even if all jobs have equal processing time. The algorithms are then extended to the more general problem where the largest $\alpha n$ jobs have no more than $c$ factor difference. % for some constant $0 < \alpha \le 1$. We also develop the first sublinear time algorithms for both problems. For the more general problem, when $ m \le \tfrac { \alpha n \epsilon}{20 c2 \cdot h } $, our algorithm is a randomized $(1+\epsilon)$-approximation scheme that runs in sublinear time. This work not only provides an algorithmic solution to the studied problem under big data % and cloud computing environment, but also gives a methodological framework for designing sublinear approximation algorithms for other scheduling problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.