Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online Learning in Dynamically Changing Environments (2302.00103v1)

Published 31 Jan 2023 in cs.LG

Abstract: We study the problem of online learning and online regret minimization when samples are drawn from a general unknown non-stationary process. We introduce the concept of a dynamic changing process with cost $K$, where the conditional marginals of the process can vary arbitrarily, but that the number of different conditional marginals is bounded by $K$ over $T$ rounds. For such processes we prove a tight (upto $\sqrt{\log T}$ factor) bound $O(\sqrt{KT\cdot\mathsf{VC}(\mathcal{H})\log T})$ for the expected worst case regret of any finite VC-dimensional class $\mathcal{H}$ under absolute loss (i.e., the expected miss-classification loss). We then improve this bound for general mixable losses, by establishing a tight (up to $\log3 T$ factor) regret bound $O(K\cdot\mathsf{VC}(\mathcal{H})\log3 T)$. We extend these results to general smooth adversary processes with unknown reference measure by showing a sub-linear regret bound for $1$-dimensional threshold functions under a general bounded convex loss. Our results can be viewed as a first step towards regret analysis with non-stationary samples in the distribution blind (universal) regime. This also brings a new viewpoint that shifts the study of complexity of the hypothesis classes to the study of the complexity of processes generating data.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.