Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reverse engineering adversarial attacks with fingerprints from adversarial examples (2301.13869v2)

Published 31 Jan 2023 in cs.AI

Abstract: In spite of intense research efforts, deep neural networks remain vulnerable to adversarial examples: an input that forces the network to confidently produce incorrect outputs. Adversarial examples are typically generated by an attack algorithm that optimizes a perturbation added to a benign input. Many such algorithms have been developed. If it were possible to reverse engineer attack algorithms from adversarial examples, this could deter bad actors because of the possibility of attribution. Here we formulate reverse engineering as a supervised learning problem where the goal is to assign an adversarial example to a class that represents the algorithm and parameters used. To our knowledge it has not been previously shown whether this is even possible. We first test whether we can classify the perturbations added to images by attacks on undefended single-label image classification models. Taking a "fight fire with fire" approach, we leverage the sensitivity of deep neural networks to adversarial examples, training them to classify these perturbations. On a 17-class dataset (5 attacks, 4 bounded with 4 epsilon values each), we achieve an accuracy of 99.4% with a ResNet50 model trained on the perturbations. We then ask whether we can perform this task without access to the perturbations, obtaining an estimate of them with signal processing algorithms, an approach we call "fingerprinting". We find the JPEG algorithm serves as a simple yet effective fingerprinter (85.05% accuracy), providing a strong baseline for future work. We discuss how our approach can be extended to attack agnostic, learnable fingerprints, and to open-world scenarios with unknown attacks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.