Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

CSDN: Combing Shallow and Deep Networks for Accurate Real-time Segmentation of High-definition Intravascular Ultrasound Images (2301.13648v1)

Published 30 Jan 2023 in eess.IV and cs.CV

Abstract: Intravascular ultrasound (IVUS) is the preferred modality for capturing real-time and high resolution cross-sectional images of the coronary arteries, and evaluating the stenosis. Accurate and real-time segmentation of IVUS images involves the delineation of lumen and external elastic membrane borders. In this paper, we propose a two-stream framework for efficient segmentation of 60 MHz high resolution IVUS images. It combines shallow and deep networks, namely, CSDN. The shallow network with thick channels focuses to extract low-level details. The deep network with thin channels takes charge of learning high-level semantics. Treating the above information separately enables learning a model to achieve high accuracy and high efficiency for accurate real-time segmentation. To further improve the segmentation performance, mutual guided fusion module is used to enhance and fuse both different types of feature representation. The experimental results show that our CSDN accomplishes a good trade-off between analysis speed and segmentation accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)