Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NoiseTransfer: Image Noise Generation with Contrastive Embeddings (2301.13554v1)

Published 31 Jan 2023 in cs.CV

Abstract: Deep image denoising networks have achieved impressive success with the help of a considerably large number of synthetic train datasets. However, real-world denoising is a still challenging problem due to the dissimilarity between distributions of real and synthetic noisy datasets. Although several real-world noisy datasets have been presented, the number of train datasets (i.e., pairs of clean and real noisy images) is limited, and acquiring more real noise datasets is laborious and expensive. To mitigate this problem, numerous attempts to simulate real noise models using generative models have been studied. Nevertheless, previous works had to train multiple networks to handle multiple different noise distributions. By contrast, we propose a new generative model that can synthesize noisy images with multiple different noise distributions. Specifically, we adopt recent contrastive learning to learn distinguishable latent features of the noise. Moreover, our model can generate new noisy images by transferring the noise characteristics solely from a single reference noisy image. We demonstrate the accuracy and the effectiveness of our noise model for both known and unknown noise removal.

Citations (5)

Summary

We haven't generated a summary for this paper yet.