Papers
Topics
Authors
Recent
2000 character limit reached

Contrast and Clustering: Learning Neighborhood Pair Representation for Source-free Domain Adaptation (2301.13428v4)

Published 31 Jan 2023 in cs.CV and cs.LG

Abstract: Unsupervised domain adaptation uses source data from different distributions to solve the problem of classifying data from unlabeled target domains. However, conventional methods require access to source data, which often raise concerns about data privacy. In this paper, we consider a more practical but challenging setting where the source domain data is unavailable and the target domain data is unlabeled. Specifically, we address the domain discrepancy problem from the perspective of contrastive learning. The key idea of our work is to learn a domain-invariant feature by 1) performing clustering directly in the original feature space with nearest neighbors; 2) constructing truly hard negative pairs by extended neighbors without introducing additional computational complexity; and 3) combining noise-contrastive estimation theory to gain computational advantage. We conduct careful ablation studies and extensive experiments on three common benchmarks: VisDA, Office-Home, and Office-31. The results demonstrate the superiority of our methods compared with other state-of-the-art works.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (2)
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.