Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Structure Flow-Guided Network for Real Depth Super-Resolution (2301.13416v1)

Published 31 Jan 2023 in cs.CV

Abstract: Real depth super-resolution (DSR), unlike synthetic settings, is a challenging task due to the structural distortion and the edge noise caused by the natural degradation in real-world low-resolution (LR) depth maps. These defeats result in significant structure inconsistency between the depth map and the RGB guidance, which potentially confuses the RGB-structure guidance and thereby degrades the DSR quality. In this paper, we propose a novel structure flow-guided DSR framework, where a cross-modality flow map is learned to guide the RGB-structure information transferring for precise depth upsampling. Specifically, our framework consists of a cross-modality flow-guided upsampling network (CFUNet) and a flow-enhanced pyramid edge attention network (PEANet). CFUNet contains a trilateral self-attention module combining both the geometric and semantic correlations for reliable cross-modality flow learning. Then, the learned flow maps are combined with the grid-sampling mechanism for coarse high-resolution (HR) depth prediction. PEANet targets at integrating the learned flow map as the edge attention into a pyramid network to hierarchically learn the edge-focused guidance feature for depth edge refinement. Extensive experiments on real and synthetic DSR datasets verify that our approach achieves excellent performance compared to state-of-the-art methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.