Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unconstrained Dynamic Regret via Sparse Coding (2301.13349v5)

Published 31 Jan 2023 in cs.LG, math.OC, and stat.ML

Abstract: Motivated by the challenge of nonstationarity in sequential decision making, we study Online Convex Optimization (OCO) under the coupling of two problem structures: the domain is unbounded, and the comparator sequence $u_1,\ldots,u_T$ is arbitrarily time-varying. As no algorithm can guarantee low regret simultaneously against all comparator sequences, handling this setting requires moving from minimax optimality to comparator adaptivity. That is, sensible regret bounds should depend on certain complexity measures of the comparator relative to one's prior knowledge. This paper achieves a new type of these adaptive regret bounds via a sparse coding framework. The complexity of the comparator is measured by its energy and its sparsity on a user-specified dictionary, which offers considerable versatility. Equipped with a wavelet dictionary for example, our framework improves the state-of-the-art bound (Jacobsen & Cutkosky, 2022) by adapting to both ($i$) the magnitude of the comparator average $||\bar u||=||\sum_{t=1}Tu_t/T||$, rather than the maximum $\max_t||u_t||$; and ($ii$) the comparator variability $\sum_{t=1}T||u_t-\bar u||$, rather than the uncentered sum $\sum_{t=1}T||u_t||$. Furthermore, our analysis is simpler due to decoupling function approximation from regret minimization.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.