Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

A Bias-Accuracy-Privacy Trilemma for Statistical Estimation (2301.13334v3)

Published 30 Jan 2023 in math.ST, cs.CR, cs.DS, stat.ML, and stat.TH

Abstract: Differential privacy (DP) is a rigorous notion of data privacy, used for private statistics. The canonical algorithm for differentially private mean estimation is to first clip the samples to a bounded range and then add noise to their empirical mean. Clipping controls the sensitivity and, hence, the variance of the noise that we add for privacy. But clipping also introduces statistical bias. This tradeoff is inherent: we prove that no algorithm can simultaneously have low bias, low error, and low privacy loss for arbitrary distributions. Additionally, we show that under strong notions of DP (i.e., pure or concentrated DP), unbiased mean estimation is impossible, even if we assume that the data is sampled from a Gaussian. On the positive side, we show that unbiased mean estimation is possible under a more permissive notion of differential privacy (approximate DP) if we assume that the distribution is symmetric.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 62 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube