Papers
Topics
Authors
Recent
2000 character limit reached

A Bias-Accuracy-Privacy Trilemma for Statistical Estimation (2301.13334v3)

Published 30 Jan 2023 in math.ST, cs.CR, cs.DS, stat.ML, and stat.TH

Abstract: Differential privacy (DP) is a rigorous notion of data privacy, used for private statistics. The canonical algorithm for differentially private mean estimation is to first clip the samples to a bounded range and then add noise to their empirical mean. Clipping controls the sensitivity and, hence, the variance of the noise that we add for privacy. But clipping also introduces statistical bias. This tradeoff is inherent: we prove that no algorithm can simultaneously have low bias, low error, and low privacy loss for arbitrary distributions. Additionally, we show that under strong notions of DP (i.e., pure or concentrated DP), unbiased mean estimation is impossible, even if we assume that the data is sampled from a Gaussian. On the positive side, we show that unbiased mean estimation is possible under a more permissive notion of differential privacy (approximate DP) if we assume that the distribution is symmetric.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 62 likes about this paper.