STEEL: Singularity-aware Reinforcement Learning (2301.13152v5)
Abstract: Batch reinforcement learning (RL) aims at leveraging pre-collected data to find an optimal policy that maximizes the expected total rewards in a dynamic environment. The existing methods require absolutely continuous assumption (e.g., there do not exist non-overlapping regions) on the distribution induced by target policies with respect to the data distribution over either the state or action or both. We propose a new batch RL algorithm that allows for singularity for both state and action spaces (e.g., existence of non-overlapping regions between offline data distribution and the distribution induced by the target policies) in the setting of an infinite-horizon Markov decision process with continuous states and actions. We call our algorithm STEEL: SingulariTy-awarE rEinforcement Learning. Our algorithm is motivated by a new error analysis on off-policy evaluation, where we use maximum mean discrepancy, together with distributionally robust optimization, to characterize the error of off-policy evaluation caused by the possible singularity and to enable model extrapolation. By leveraging the idea of pessimism and under some technical conditions, we derive a first finite-sample regret guarantee for our proposed algorithm under singularity. Compared with existing algorithms,by requiring only minimal data-coverage assumption, STEEL improves the applicability and robustness of batch RL. In addition, a two-step adaptive STEEL, which is nearly tuning-free, is proposed. Extensive simulation studies and one (semi)-real experiment on personalized pricing demonstrate the superior performance of our methods in dealing with possible singularity in batch RL.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.