Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving the Inference of Topic Models via Infinite Latent State Replications (2301.12974v1)

Published 25 Jan 2023 in cs.CL, cs.AI, cs.LG, math.ST, and stat.TH

Abstract: In text mining, topic models are a type of probabilistic generative models for inferring latent semantic topics from text corpus. One of the most popular inference approaches to topic models is perhaps collapsed Gibbs sampling (CGS), which typically samples one single topic label for each observed document-word pair. In this paper, we aim at improving the inference of CGS for topic models. We propose to leverage state augmentation technique by maximizing the number of topic samples to infinity, and then develop a new inference approach, called infinite latent state replication (ILR), to generate robust soft topic assignment for each given document-word pair. Experimental results on the publicly available datasets show that ILR outperforms CGS for inference of existing established topic models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.