Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Improving the Inference of Topic Models via Infinite Latent State Replications (2301.12974v1)

Published 25 Jan 2023 in cs.CL, cs.AI, cs.LG, math.ST, and stat.TH

Abstract: In text mining, topic models are a type of probabilistic generative models for inferring latent semantic topics from text corpus. One of the most popular inference approaches to topic models is perhaps collapsed Gibbs sampling (CGS), which typically samples one single topic label for each observed document-word pair. In this paper, we aim at improving the inference of CGS for topic models. We propose to leverage state augmentation technique by maximizing the number of topic samples to infinity, and then develop a new inference approach, called infinite latent state replication (ILR), to generate robust soft topic assignment for each given document-word pair. Experimental results on the publicly available datasets show that ILR outperforms CGS for inference of existing established topic models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.