Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Investigating Feature and Model Importance in Android Malware Detection: An Implemented Survey and Experimental Comparison of ML-Based Methods (2301.12778v3)

Published 30 Jan 2023 in cs.LG and cs.CR

Abstract: The popularity of Android means it is a common target for malware. Over the years, various studies have found that machine learning models can effectively discriminate malware from benign applications. However, as the operating system evolves, so does malware, bringing into question the findings of these previous studies, many of which report very high accuracies using small, outdated, and often imbalanced datasets. In this paper, we reimplement 18 representative past works and reevaluate them using a balanced, relevant, and up-to-date dataset comprising 124,000 applications. We also carry out new experiments designed to fill holes in existing knowledge, and use our findings to identify the most effective features and models to use for Android malware detection within a contemporary environment. We show that high detection accuracies (up to 96.8%) can be achieved using features extracted through static analysis alone, yielding a modest benefit (1%) from using far more expensive dynamic analysis. API calls and opcodes are the most productive static and TCP network traffic provide the most predictive dynamic features. Random forests are generally the most effective model, outperforming more complex deep learning approaches. Whilst directly combining static and dynamic features is generally ineffective, ensembling models separately leads to performances comparable to the best models but using less brittle features.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube