Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Web of Things Architecture for Digital Twin Creation and Model-Based Reinforcement Control (2301.12761v1)

Published 30 Jan 2023 in cs.NI

Abstract: Internet of Things (IoT) devices are available in a multitude of scenarios, and provide constant, contextual data which can be leveraged to automatically reconfigure and optimize smart environments. To realize this vision, AI and deep learning techniques are usually employed, however they need large quantity of data which is often not feasible in IoT scenarios. Digital Twins (DTs) have recently emerged as an effective way to replicate physical entities in the digital domain, to allow for simulation and testing of models and services. In this paper, we present a novel architecture based on the emerging Web of Things (WoT) standard, which provides a DT of a smart environment and applies Deep Reinforcement Learning (DRL) techniques on real time data. We implement our system in a real deployment, and test it along with a legacy system. Our findings show that the benefits of having a digital twin, specifically for DRL models, allow for faster convergence and finer tuning.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.