Emergent Mind

Abstract

We propose A-Crab (Actor-Critic Regularized by Average Bellman error), a new practical algorithm for offline reinforcement learning (RL) in complex environments with insufficient data coverage. Our algorithm combines the marginalized importance sampling framework with the actor-critic paradigm, where the critic returns evaluations of the actor (policy) that are pessimistic relative to the offline data and have a small average (importance-weighted) Bellman error. Compared to existing methods, our algorithm simultaneously offers a number of advantages: (1) It achieves the optimal statistical rate of $1/\sqrt{N}$ -- where $N$ is the size of offline dataset -- in converging to the best policy covered in the offline dataset, even when combined with general function approximators. (2) It relies on a weaker average notion of policy coverage (compared to the $\ell_\infty$ single-policy concentrability) that exploits the structure of policy visitations. (3) It outperforms the data-collection behavior policy over a wide range of specific hyperparameters. We provide both theoretical analysis and experimental results to validate the effectiveness of our proposed algorithm.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.