Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving Cross-lingual Information Retrieval on Low-Resource Languages via Optimal Transport Distillation (2301.12566v1)

Published 29 Jan 2023 in cs.CL and cs.IR

Abstract: Benefiting from transformer-based pre-trained LLMs, neural ranking models have made significant progress. More recently, the advent of multilingual pre-trained LLMs provides great support for designing neural cross-lingual retrieval models. However, due to unbalanced pre-training data in different languages, multilingual LLMs have already shown a performance gap between high and low-resource languages in many downstream tasks. And cross-lingual retrieval models built on such pre-trained models can inherit language bias, leading to suboptimal result for low-resource languages. Moreover, unlike the English-to-English retrieval task, where large-scale training collections for document ranking such as MS MARCO are available, the lack of cross-lingual retrieval data for low-resource language makes it more challenging for training cross-lingual retrieval models. In this work, we propose OPTICAL: Optimal Transport distillation for low-resource Cross-lingual information retrieval. To transfer a model from high to low resource languages, OPTICAL forms the cross-lingual token alignment task as an optimal transport problem to learn from a well-trained monolingual retrieval model. By separating the cross-lingual knowledge from knowledge of query document matching, OPTICAL only needs bitext data for distillation training, which is more feasible for low-resource languages. Experimental results show that, with minimal training data, OPTICAL significantly outperforms strong baselines on low-resource languages, including neural machine translation.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.