Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Non-Asymptotic State-Space Identification of Closed-Loop Stochastic Linear Systems using Instrumental Variables (2301.12537v4)

Published 29 Jan 2023 in eess.SY, cs.SY, math.DS, and stat.ME

Abstract: The paper suggests a generalization of the Sign-Perturbed Sums (SPS) finite sample system identification method for the identification of closed-loop observable stochastic linear systems in state-space form. The solution builds on the theory of matrix-variate regression and instrumental variable methods to construct distribution-free confidence regions for the state-space matrices. Both direct and indirect identification are studied, and the exactness as well as the strong consistency of the construction are proved. Furthermore, a new, computationally efficient ellipsoidal outer-approximation algorithm for the confidence regions is proposed. The new construction results in a semidefinite optimization problem which has an order-of-magnitude smaller number of constraints, as if one applied the ellipsoidal outer-approximation after vectorization. The effectiveness of the approach is also demonstrated empirically via a series of numerical experiments.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.