Non-Asymptotic State-Space Identification of Closed-Loop Stochastic Linear Systems using Instrumental Variables (2301.12537v4)
Abstract: The paper suggests a generalization of the Sign-Perturbed Sums (SPS) finite sample system identification method for the identification of closed-loop observable stochastic linear systems in state-space form. The solution builds on the theory of matrix-variate regression and instrumental variable methods to construct distribution-free confidence regions for the state-space matrices. Both direct and indirect identification are studied, and the exactness as well as the strong consistency of the construction are proved. Furthermore, a new, computationally efficient ellipsoidal outer-approximation algorithm for the confidence regions is proposed. The new construction results in a semidefinite optimization problem which has an order-of-magnitude smaller number of constraints, as if one applied the ellipsoidal outer-approximation after vectorization. The effectiveness of the approach is also demonstrated empirically via a series of numerical experiments.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.