Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Attention Map Reuse for Efficient Transformer Neural Networks (2301.12444v1)

Published 29 Jan 2023 in cs.AI and eess.SP

Abstract: Transformer-based deep neural networks have achieved great success in various sequence applications due to their powerful ability to model long-range dependency. The key module of Transformer is self-attention (SA) which extracts features from the entire sequence regardless of the distance between positions. Although SA helps Transformer performs particularly well on long-range tasks, SA requires quadratic computation and memory complexity with the input sequence length. Recently, attention map reuse, which groups multiple SA layers to share one attention map, has been proposed and achieved significant speedup for speech recognition models. In this paper, we provide a comprehensive study on attention map reuse focusing on its ability to accelerate inference. We compare the method with other SA compression techniques and conduct a breakdown analysis of its advantages for a long sequence. We demonstrate the effectiveness of attention map reuse by measuring the latency on both CPU and GPU platforms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.