Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exploring Attention Map Reuse for Efficient Transformer Neural Networks (2301.12444v1)

Published 29 Jan 2023 in cs.AI and eess.SP

Abstract: Transformer-based deep neural networks have achieved great success in various sequence applications due to their powerful ability to model long-range dependency. The key module of Transformer is self-attention (SA) which extracts features from the entire sequence regardless of the distance between positions. Although SA helps Transformer performs particularly well on long-range tasks, SA requires quadratic computation and memory complexity with the input sequence length. Recently, attention map reuse, which groups multiple SA layers to share one attention map, has been proposed and achieved significant speedup for speech recognition models. In this paper, we provide a comprehensive study on attention map reuse focusing on its ability to accelerate inference. We compare the method with other SA compression techniques and conduct a breakdown analysis of its advantages for a long sequence. We demonstrate the effectiveness of attention map reuse by measuring the latency on both CPU and GPU platforms.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.