Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Debiased Fine-Tuning for Vision-language Models by Prompt Regularization (2301.12429v2)

Published 29 Jan 2023 in cs.CV

Abstract: We present a new paradigm for fine-tuning large-scale visionlanguage pre-trained models on downstream task, dubbed Prompt Regularization (ProReg). Different from traditional fine-tuning which easily overfits to the downstream task data, ProReg uses the prediction by prompting the pretrained model to regularize the fine-tuning. The motivation is: by prompting the large model "a photo of a [CLASS]", the fil-lin answer is only dependent on the pretraining encyclopedic knowledge while independent of the task data distribution, which is usually biased. Specifically, given a training sample prediction during fine-tuning, we first calculate its KullbackLeibler loss of the prompt prediction and Cross-Entropy loss of the ground-truth label, and then combine them with a proposed sample-wise adaptive trade-off weight, which automatically adjusts the transfer between the pretrained and downstream domains. On various out-of-distribution benchmarks, we show the consistently strong performance of ProReg compared with conventional fine-tuning, zero-shot prompt, prompt tuning, and other state-of-the-art methods.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.