Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Smooth Non-Stationary Bandits (2301.12366v3)

Published 29 Jan 2023 in cs.LG, cs.AI, math.OC, math.ST, and stat.TH

Abstract: In many applications of online decision making, the environment is non-stationary and it is therefore crucial to use bandit algorithms that handle changes. Most existing approaches are designed to protect against non-smooth changes, constrained only by total variation or Lipschitzness over time. However, in practice, environments often change {\em smoothly}, so such algorithms may incur higher-than-necessary regret. We study a non-stationary bandits problem where each arm's mean reward sequence can be embedded into a $\beta$-H\"older function, i.e., a function that is $(\beta-1)$-times Lipschitz-continuously differentiable. The non-stationarity becomes more smooth as $\beta$ increases. When $\beta=1$, this corresponds to the non-smooth regime, where \cite{besbes2014stochastic} established a minimax regret of $\tilde \Theta(T{2/3})$. We show the first separation between the smooth (i.e., $\beta\ge 2$) and non-smooth (i.e., $\beta=1$) regimes by presenting a policy with $\tilde O(k{4/5} T{3/5})$ regret on any $k$-armed, $2$-H\"older instance. We complement this result by showing that the minimax regret on the $\beta$-H\"older family of instances is $\Omega(T{(\beta+1)/(2\beta+1)})$ for any integer $\beta\ge 1$. This matches our upper bound for $\beta=2$ up to logarithmic factors. Furthermore, we validated the effectiveness of our policy through a comprehensive numerical study using real-world click-through rate data.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.