Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Cross-Subject Deep Transfer Models for Evoked Potentials in Brain-Computer Interface (2301.12322v1)

Published 29 Jan 2023 in cs.LG, cs.AI, and cs.HC

Abstract: Brain Computer Interface (BCI) technologies have the potential to improve the lives of millions of people around the world, whether through assistive technologies or clinical diagnostic tools. Despite advancements in the field, however, at present consumer and clinical viability remains low. A key reason for this is that many of the existing BCI deployments require substantial data collection per end-user, which can be cumbersome, tedious, and error-prone to collect. We address this challenge via a deep learning model, which, when trained across sufficient data from multiple subjects, offers reasonable performance out-of-the-box, and can be customized to novel subjects via a transfer learning process. We demonstrate the fundamental viability of our approach by repurposing an older but well-curated electroencephalography (EEG) dataset and benchmarking against several common approaches/techniques. We then partition this dataset into a transfer learning benchmark and demonstrate that our approach significantly reduces data collection burden per-subject. This suggests that our model and methodology may yield improvements to BCI technologies and enhance their consumer/clinical viability.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.