Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

MRAC with Memory for Switched Linear Systems (2301.12285v1)

Published 28 Jan 2023 in eess.SY and cs.SY

Abstract: This work proposes a switched model reference adaptive control (S-MRAC) architecture for a multi-input multi-output (MIMO) switched linear system with memory for enhanced learning. A salient feature of the proposed method that separates it from most previous results is the use of memory that store the estimator states at switching and facilitate parameter learning during both active and inactive phases of a subsystem, thereby improving the tracking performance of the overall switched system. Specifically, the learning experience from the previous active duration of a subsystem is retained in the memory and reused when the subsystem is inactive and when the subsystem becomes active again. Parameter convergence is shown based on an intermittent initial excitation (IIE), which is significantly relaxed than the classical persistence of excitation (PE) condition. A common Lyapunov function is considered to ensure closed-loop stability with S-MRAC. Further under IIE, the exponential stability of tracking and parameter estimation error dynamics are guaranteed.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.