Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Accelerators in 2.5D Chiplet Platforms with Silicon Photonics (2301.12252v1)

Published 28 Jan 2023 in cs.AR, cs.AI, and cs.LG

Abstract: Domain-specific ML accelerators such as Google's TPU and Apple's Neural Engine now dominate CPUs and GPUs for energy-efficient ML processing. However, the evolution of electronic accelerators is facing fundamental limits due to the limited computation density of monolithic processing chips and the reliance on slow metallic interconnects. In this paper, we present a vision of how optical computation and communication can be integrated into 2.5D chiplet platforms to drive an entirely new class of sustainable and scalable ML hardware accelerators. We describe how cross-layer design and fabrication of optical devices, circuits, and architectures, and hardware/software codesign can help design efficient photonics-based 2.5D chiplet platforms to accelerate emerging ML workloads.

Citations (10)

Summary

We haven't generated a summary for this paper yet.