Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deciphering the Projection Head: Representation Evaluation Self-supervised Learning (2301.12189v1)

Published 28 Jan 2023 in cs.LG

Abstract: Self-supervised learning (SSL) aims to learn intrinsic features without labels. Despite the diverse architectures of SSL methods, the projection head always plays an important role in improving the performance of the downstream task. In this work, we systematically investigate the role of the projection head in SSL. Specifically, the projection head targets the uniformity part of SSL, which pushes the dissimilar samples away from each other, thus enabling the encoder to focus on extracting semantic features. Based on this understanding, we propose a Representation Evaluation Design (RED) in SSL models in which a shortcut connection between the representation and the projection vectors is built. Extensive experiments with different architectures, including SimCLR, MoCo-V2, and SimSiam, on various datasets, demonstrate that the representation evaluation design can consistently improve the baseline models in the downstream tasks. The learned representation from the RED-SSL models shows superior robustness to unseen augmentations and out-of-distribution data.

Citations (6)

Summary

We haven't generated a summary for this paper yet.