Papers
Topics
Authors
Recent
2000 character limit reached

HAT-GAE: Self-Supervised Graph Auto-encoders with Hierarchical Adaptive Masking and Trainable Corruption (2301.12063v1)

Published 28 Jan 2023 in cs.AI

Abstract: Self-supervised auto-encoders have emerged as a successful framework for representation learning in computer vision and natural language processing in recent years, However, their application to graph data has been met with limited performance due to the non-Euclidean and complex structure of graphs in comparison to images or text, as well as the limitations of conventional auto-encoder architectures. In this paper, we investigate factors impacting the performance of auto-encoders on graph data and propose a novel auto-encoder model for graph representation learning. Our model incorporates a hierarchical adaptive masking mechanism to incrementally increase the difficulty of training in order to mimic the process of human cognitive learning, and a trainable corruption scheme to enhance the robustness of learned representations. Through extensive experimentation on ten benchmark datasets, we demonstrate the superiority of our proposed method over state-of-the-art graph representation learning models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.