Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semantic Adversarial Attacks on Face Recognition through Significant Attributes (2301.12046v1)

Published 28 Jan 2023 in cs.CV and cs.AI

Abstract: Face recognition is known to be vulnerable to adversarial face images. Existing works craft face adversarial images by indiscriminately changing a single attribute without being aware of the intrinsic attributes of the images. To this end, we propose a new Semantic Adversarial Attack called SAA-StarGAN that tampers with the significant facial attributes for each image. We predict the most significant attributes by applying the cosine similarity or probability score. The probability score method is based on training a Face Verification model for an attribute prediction task to obtain a class probability score for each attribute. The prediction process will help craft adversarial face images more easily and efficiently, as well as improve the adversarial transferability. Then, we change the most significant facial attributes, with either one or more of the facial attributes for impersonation and dodging attacks in white-box and black-box settings. Experimental results show that our method could generate diverse and realistic adversarial face images meanwhile avoid affecting human perception of the face recognition. SAA-StarGAN achieves an 80.5% attack success rate against black-box models, outperforming existing methods by 35.5% under the impersonation attack. Concerning the black-box setting, SAA-StarGAN achieves high attack success rates on various models. The experiments confirm that predicting the most important attributes significantly affects the success of adversarial attacks in both white-box and black-box settings and could enhance the transferability of the crafted adversarial examples.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube