Papers
Topics
Authors
Recent
2000 character limit reached

Even if Explanations: Prior Work, Desiderata & Benchmarks for Semi-Factual XAI (2301.11970v2)

Published 27 Jan 2023 in cs.AI

Abstract: Recently, eXplainable AI (XAI) research has focused on counterfactual explanations as post-hoc justifications for AI-system decisions (e.g. a customer refused a loan might be told: If you asked for a loan with a shorter term, it would have been approved). Counterfactuals explain what changes to the input-features of an AI system change the output-decision. However, there is a sub-type of counterfactual, semi-factuals, that have received less attention in AI (though the Cognitive Sciences have studied them extensively). This paper surveys these literatures to summarise historical and recent breakthroughs in this area. It defines key desiderata for semi-factual XAI and reports benchmark tests of historical algorithms (along with a novel, naieve method) to provide a solid basis for future algorithmic developments.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 11 likes about this paper.