Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

HDPV-SLAM: Hybrid Depth-augmented Panoramic Visual SLAM for Mobile Mapping System with Tilted LiDAR and Panoramic Visual Camera (2301.11823v3)

Published 27 Jan 2023 in cs.RO and cs.CV

Abstract: This paper proposes a novel visual simultaneous localization and mapping (SLAM) system called Hybrid Depth-augmented Panoramic Visual SLAM (HDPV-SLAM), that employs a panoramic camera and a tilted multi-beam LiDAR scanner to generate accurate and metrically-scaled trajectories. RGB-D SLAM was the design basis for HDPV-SLAM, which added depth information to visual features. It aims to solve the two major issues hindering the performance of similar SLAM systems. The first obstacle is the sparseness of LiDAR depth, which makes it difficult to correlate it with the extracted visual features of the RGB image. A deep learning-based depth estimation module for iteratively densifying sparse LiDAR depth was suggested to address this issue. The second issue pertains to the difficulties in depth association caused by a lack of horizontal overlap between the panoramic camera and the tilted LiDAR sensor. To surmount this difficulty, we present a hybrid depth association module that optimally combines depth information estimated by two independent procedures, feature-based triangulation and depth estimation. During a phase of feature tracking, this hybrid depth association module aims to maximize the use of more accurate depth information between the triangulated depth with visual features tracked and the deep learning-based corrected depth. We evaluated the efficacy of HDPV-SLAM using the 18.95 km-long York University and Teledyne Optech (YUTO) MMS dataset. The experimental results demonstrate that the two proposed modules contribute substantially to the performance of HDPV-SLAM, which surpasses that of the state-of-the-art (SOTA) SLAM systems.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.