Papers
Topics
Authors
Recent
2000 character limit reached

Hydrodynamic and symbolic models of computation with advice (2301.11820v3)

Published 27 Jan 2023 in math-ph, cs.CC, math.DS, and math.MP

Abstract: Dynamical systems and physical models defined on idealized continuous phase spaces are known to exhibit non-computable phenomena, examples include the wave equation, recurrent neural networks, or Julia sets in holomorphic dynamics. Inspired by the works of Moore and Siegelmann, we show that ideal fluids, modeled by the Euler equations, are capable of simulating poly-time Turing machines with polynomial advice on compact three-dimensional domains. This is precisely the complexity class $P/poly$ considered by Siegelmann in her study of analog recurrent neural networks. In addition, we introduce a new class of symbolic systems, related to countably piecewise linear transformations of the unit square, that is capable of simulating Turing machines with advice in real-time, contrary to previously known models.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.