Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

RAPTOR: Advanced Persistent Threat Detection in Industrial IoT via Attack Stage Correlation (2301.11524v3)

Published 27 Jan 2023 in cs.CR

Abstract: Past Advanced Persistent Threat (APT) attacks on Industrial Internet-of-Things (IIoT), such as the 2016 Ukrainian power grid attack and the 2017 Saudi petrochemical plant attack, have shown the disruptive effects of APT campaigns while new IIoT malware continue to be developed by APT groups. Existing APT detection systems have been designed using cyberattack TTPs modelled for enterprise IT networks and leverage specific data sources (e.g., Linux audit logs, Windows event logs) which are not found on ICS devices. In this work, we propose RAPTOR, a system to detect APT campaigns in IIoT. Using cyberattack TTPs modelled for ICS/OT environments and focusing on "invariant" attack phases, RAPTOR detects and correlates various APT attack stages in IIoT leveraging data which can be readily collected from ICS devices/networks (packet traffic traces, IDS alerts). Subsequently, it constructs a high-level APT campaign graph which can be used by cybersecurity analysts towards attack analysis and mitigation. A performance evaluation of RAPTOR's APT attack-stage detection modules shows high precision and low false positive/negative rates. We also show that RAPTOR is able to construct the APT campaign graph for APT attacks (modelled after real-world attacks on ICS/OT infrastructure) executed on our IIoT testbed.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube