Attacking Important Pixels for Anchor-free Detectors (2301.11457v1)
Abstract: Deep neural networks have been demonstrated to be vulnerable to adversarial attacks: subtle perturbation can completely change the prediction result. Existing adversarial attacks on object detection focus on attacking anchor-based detectors, which may not work well for anchor-free detectors. In this paper, we propose the first adversarial attack dedicated to anchor-free detectors. It is a category-wise attack that attacks important pixels of all instances of a category simultaneously. Our attack manifests in two forms, sparse category-wise attack (SCA) and dense category-wise attack (DCA), that minimize the $L_0$ and $L_\infty$ norm-based perturbations, respectively. For DCA, we present three variants, DCA-G, DCA-L, and DCA-S, that select a global region, a local region, and a semantic region, respectively, to attack. Our experiments on large-scale benchmark datasets including PascalVOC, MS-COCO, and MS-COCO Keypoints indicate that our proposed methods achieve state-of-the-art attack performance and transferability on both object detection and human pose estimation tasks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.